SENN GROUPSENN GROUPSENN GROUPSENN GROUP
  • Home
  • Group Members
    • Dr Mark Senn
    • Dr Jeremiah Tidey
    • Christopher Keegan
    • Dr Nick Funnell
    • Dashnor Beqiri
    • Evie Ladbrook
    • Ben Tragheim
    • Struan Simpson
    • Craig Hiley
    • Matt Edwards
    • Zhi Yang Lee
  • Research
  • Fundamental Science Matters
  • Publications
  • Funding
  • Group Meetings
  • Collaborators
  • Contact

Recipes for improper ferroelectricity in molecular perovskites

    Home Publications Recipes for improper ferroelectricity in molecular perovskites
    NextPrevious

    Recipes for improper ferroelectricity in molecular perovskites

    By Mark | Publications | Comments are Closed | 25 June, 2018 | 0

    Hanna L. B. Boström,  Mark S. Senn and Andrew L. Goodwin, Nature Communications (2018) 9:2380

    The central goal of crystal engineering is to develop precise control over material function via rational design of structure. A particularly successful realisation of this paradigm is the example of hybrid improper ferroelectricity in layered perovskite materials, where cation vacancies and cooperative octahedral tilts combine to break inversion symmetry. However, in the more chemically diverse and technologically relevant family of ABX3 perovskites, symmetry conspires to render hybrid coupling to polar distortions impossible. Molecular substitution on the A- and/or X-site significantly diversifies the range of distortions possible. In this study, we use group-theoretical analysis to uncover a profound enhancement of the number of improper ferroelectric coupling schemes available to molecular perovskites. Not only do our insights rationalise the emergence of polarisation in a number of previously-studied materials, but we identify the fundamental importance of molecular degrees of freedom at the A-site, which are much more straightforwardly controlled from a synthetic viewpoint than are lattice, charge and orbital degrees of freedom. We envisage that the crystal design principles we develop here will be enable targeted synthesis of a large family of new acentric functional materials.

    No tags.

    Mark

    Principal Investigator

    More posts by Mark

    Related Posts

    • Symmetry-adapted pair distribution function analysis (SAPA): a novel approach to evaluating lattice dynamics and local distortions from total scattering data

      By Mark | Comments are Closed

      T. A. Bird, A. Herlihy and Mark S. Senn, J. Appl. Cryst. (2021). 54. A novel symmetry-adapted pair distribution function analysis (SAPA) method for extracting information on local distortions from pair distribution function data isRead more

    • In Situ X-ray Diffraction Investigation of Electric Field-Induced Switching in a Hybrid Improper Ferroelectric

      By Mark | Comments are Closed

      Gabriel Clarke, Chris Ablitt, John Daniels, Stefano Checchia and Mark S. Senn. J. Appl. Cryst. (2021) 54. Improper ferroelectric materials are increasingly under investigation for their potential to expand the catalogue of functional ferroelectrics andRead more

    • From first- to second-order phase transitions in hybrid improper ferroelectrics through entropy stabilization

      By Mark | Comments are Closed

      Fernando Pomiro, Chris Ablitt, Nicholas C. Bristowe, Arash A. Mostofi, Choongjae Won, Sang-Wook Cheong, and Mark S. Senn.Phys. Rev. B 102, 014101. Hybrid improper ferroelectrics (HIFs) have been studied intensively over the past few yearsRead more

    • Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6

      By Mark | Comments are Closed

      Tobias Bird, Jessica Woodland-Scott, Lei Hu, Michael Wharmby, Jun Chen, Andrew Goodwin, Mark Senn, Phys. Rev. B 101(2020), 064306. We use a symmetry-motivated approach to analysing X-ray pair distribution functions to study the mechanism ofRead more

    • Tolerance Factor Control of Uniaxial Negative Thermal Expansion in a Layered Perovskite

      By Mark | Comments are Closed

      Chris Ablitt, Harriet McCay, Sarah Craddock, Lauren Cooper, Emily Reynolds, Arash A. Mostofi, Nicholas C. Bristowe, Claire A. Murray, and Mark S. Senn. Chem. Mater. 2020, 32, 1, 605-610. By tuning the tolerance factor, t,Read more

    NextPrevious
    • News
    Copyright 2022 SENN GROUP | All Rights Reserved | Login
    • Home
    • Group Members
      • Dr Mark Senn
      • Dr Jeremiah Tidey
      • Christopher Keegan
      • Dr Nick Funnell
      • Dashnor Beqiri
      • Evie Ladbrook
      • Ben Tragheim
      • Struan Simpson
      • Craig Hiley
      • Matt Edwards
      • Zhi Yang Lee
    • Research
    • Fundamental Science Matters
    • Publications
    • Funding
    • Group Meetings
    • Collaborators
    • Contact
    SENN GROUP